STELLAR: Spatial-Temporal Latent Ranking for Successive Point-of-Interest Recommendation

نویسندگان

  • Shenglin Zhao
  • Tong Zhao
  • Haiqin Yang
  • Michael R. Lyu
  • Irwin King
چکیده

Successive point-of-interest (POI) recommendation in location-based social networks (LBSNs) becomes a significant task since it helps users to navigate a number of candidate POIs and provides the best POI recommendations based on users’ most recent check-in knowledge. However, all existing methods for successive POI recommendation only focus on modeling the correlation between POIs based on users’ check-in sequences, but ignore an important fact that successive POI recommendation is a time-subtle recommendation task. In fact, even with the same previous check-in information, users would prefer different successive POIs at different time. To capture the impact of time on successive POI recommendation, in this paper, we propose a spatial-temporal latent ranking (STELLAR) method to explicitly model the interactions among user, POI, and time. In particular, the proposed STELLAR model is built upon a ranking-based pairwise tensor factorization framework with a fine-grained modeling of user-POI, POI-time, and POI-POI interactions for successive POI recommendation. Moreover, we propose a new interval-aware weight utility function to differentiate successive check-ins’ correlations, which breaks the time interval constraint in prior work. Evaluations on two real-world datasets demonstrate that the STELLAR model outperforms state-of-the-art successive POI recommendation model about 20% in Precision@5 and Recall@5.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PGRank: Personalized Geographical Ranking for Point-of-Interest Recommendation

Point-of-interest (POI) recommendation has become more and more important, since it could discover user behavior pattern and find interesting venues for them. To address this problem, we propose a rank-based method, PGRank, which integrates user geographical preference and latent preference into Bayesian personalized ranking framework. The experimental results on a real dataset show its effective.

متن کامل

A Review of Spatial Factor Modeling Techniques in Recommending Point of Interest Using Location-based Social Network Information

The rapid growth of mobile phone technology and its combination with various technologies like GPS has added location context to social networks and has led to the formation of location-based social networks. In social networking sites, recommender systems are used to recommend points of interest (POIs) to users. Traditional recommender systems, such as film and book recommendations, have a lon...

متن کامل

GT-SEER: Geo-Temporal SEquential Embedding Rank for Point-of-interest Recommendation

Point-of-interest (POI) recommendation is an important application in location-based social networks (LBSNs), which learns the user preference and mobility pattern from check-in sequences to recommend POIs. However, previous POI recommendation systems model check-in sequences based on either tensor factorization or Markov chain model, which cannot capture contextual check-in information in sequ...

متن کامل

Geo-Teaser: Geo-Temporal Sequential Embedding Rank for Point-of-interest Recommendation

Point-of-interest (POI) recommendation is an important application for location-based social networks (LBSNs), which learns the user preference and mobility pattern from check-in sequences to recommend POIs. Previous studies show that modeling the sequential pattern of user check-ins is necessary for POI recommendation. Markov chain model, recurrent neural network, and the word2vec framework ar...

متن کامل

A Spatial-Temporal Probabilistic Matrix Factorization Model for Point-of-Interest Recommendation | Proceedings of the 2016 SIAM International Conference on Data Mining | Society for Industrial and Applied Mathematics

With the rapid development of Location-based Social Network (LBSN) services, a large number of Point-of-Interests (POIs) have been available, which consequently raises a great demand of building personalized POI recommender systems. A personalized POI recommender system can significantly help users to find their preferred POIs and assist POI owners to attract more customers. However, due to the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016